Timing of metamorphosis and the onset of the negative feedback loop between the thyroid gland and the pituitary is controlled by type II iodothyronine deiodinase in Xenopus laevis.

نویسندگان

  • H Huang
  • L Cai
  • B F Remo
  • D D Brown
چکیده

Two important features of amphibian metamorphosis are the sequential response of tissues to different concentrations of thyroid hormone (TH) and the development of the negative feedback loop between the pituitary and the thyroid gland that regulates TH synthesis by the thyroid gland. At the climax of metamorphosis in Xenopus laevis (when the TH level is highest), the ratio of the circulating precursor thyroxine (T4) to the active form 3,5,3'-triiodothyronine (T3) in the blood is many times higher than it is in tissues. This difference is because of the conversion of T4 to T3 in target cells of the tadpole catalyzed by the enzyme type II iodothyronine deiodinase (D2) and the local effect (cell autonomy) of this activity. Limb buds and tails express D2 early and late in metamorphosis, respectively, correlating with the time that these organs undergo TH-induced change. T(3) is required to complete metamorphosis because the peak concentration of T4 that is reached at metamorphic climax cannot induce the final morphological changes. At the climax of metamorphosis, D2 expression is activated specifically in the anterior pituitary cells that express the genes for thyroid-stimulating hormone but not in the cells that express proopiomelanocortin. Physiological concentrations of T3 but not T4 can suppress thyrotropin subunit beta gene expression. The timing and the remarkable specificity of D2 expression in the thyrotrophs of the anterior pituitary coupled with the requirement for locally synthesized T3 strongly support a role for D2 in the onset of the negative feedback loop at the climax of metamorphosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of pituitary thyrotropin gene expression during Xenopus metamorphosis: negative feedback is functional throughout metamorphosis.

Several hypotheses have been proposed to explain the increase and sustained expression of pituitary thyrotropin (TSH) in the presence of elevated plasma thyroid hormone (TH) concentrations at metamorphic climax in amphibians. It has been proposed that the negative feedback of TH on TSH is inoperative until metamorphic climax, and that it is established at this time by the upregulation of pituit...

متن کامل

Thyroid hormone controls the development of connections between the spinal cord and limbs during Xenopus laevis metamorphosis.

During premetamorphic stages, Xenopus laevis tadpoles expressing either a dominant-negative thyroid hormone (TH) receptor or a type-III iodothyronine deiodinase transgene in the nervous system have reduced TH-induced proliferation in the spinal cord and produce fewer hindlimb-innervating motorneurons. During prometamorphic stages, innervation of the hindlimbs is reduced, and few functional neur...

متن کامل

Asymmetric Growth and Development of the Xenopus laevis Retina during Metamorphosis Is Controlled by Type III Deiodinase

During the metamorphosis of the Xenopus laevis retina, thyroid hormone (TH) preferentially induces ventral ciliary marginal zone (CMZ) cells to both increase their proliferation and give rise to ipsilaterally projecting ganglion cells. Here we show that dorsal CMZ cells express type III deiodinase (D3), an enzyme that inactivates TH. The dorsal CMZ cells can be induced to proliferate if deiodin...

متن کامل

The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .

Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...

متن کامل

Thyroid Hormone-disrupting Effects and the Amphibian Metamorphosis Assay

There are continued concerns about endocrine-disrupting chemical effects, and appropriate vertebrate models for assessment of risk are a high priority. Frog tadpoles are very sensitive to environmental substances because of their habitat and the complex processes of metamorphosis regulated by the endocrine system, mainly thyroid hormones. During metamorphosis, marked alteration in hormonal fact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 13  شماره 

صفحات  -

تاریخ انتشار 2001